skip to main content


Search for: All records

Creators/Authors contains: "Rivet, J.-P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    GRB 230812B is a bright and relatively nearby (z = 0.36) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and submillimetre bands from the GRANDMA (Global Rapid Advanced Network for Multimessenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v ∼ 17 × 103 km s−1. We analyse the photometric data first using empirical fits of the flux and then with full Bayesian inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of 5.75 × 1042 erg s−1, at $15.76^{+0.81}_{-1.21}$ d (in the observer frame) after the trigger, with a half-max time width of 22.0 d. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fitting model favours a very low density environment ($\log _{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.38^{+1.45}_{-1.60}$) and small values for the jet’s core angle $\theta _{\rm core} = 1.54^{+1.02}_{-0.81} \ \rm {deg}$ and viewing angle $\theta _{\rm obs} = 0.76^{+1.29}_{-0.76} \ \rm {deg}$. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump.

     
    more » « less
  2. Context. Asteroid (22) Kalliope is the second largest M-type asteroid in the main belt and is orbited by a satellite, Linus. Whereas the mass of Kalliope is already well constrained thanks to the presence of a moon, its volume is still poorly known, leading to uncertainties on its bulk density and internal structure. Aims. We aim to refine the shape of (22) Kalliope and thus its diameter and bulk density, as well as the orbit of its moon to better constrain its mass, hence density and internal structure. Methods. We acquired disk-resolved observations of (22) Kalliope using the VLT/SPHERE/ZIMPOL instrument to reconstruct its three-dimensional (3D) shape using three different modeling techniques. These images were also used together with new speckle observations at the C2PU/PISCO instrument as well as archival images from other large ground-based telescopes to refine the orbit of Linus. Results. The volume of (22) Kalliope given by the shape models, corresponding to D = 150 ± 5 km, and the mass constrained by its satellite’s orbit yield a density of ρ = 4.40 ± 0.46 g cm −3 . This high density potentially makes (22) Kalliope the densest known small body in the Solar System. A macroporosity in the 10–25% range (as expected for this mass and size), implies a grain density in the 4.8–5.9 g cm −3 range. Kalliope’s high bulk density, along with its silicate-rich surface implied by its low radar albedo, implies a differentiated interior with metal contributing to most of the mass of the body. Conclusions. Kalliope’s high metal content (40–60%) along with its metal-poor mantle makes it the smallest known Mercury-like body. A large impact at the origin of the formation of the moon Linus is likely the cause of its high metal content and density. 
    more » « less
  3. ABSTRACT

    Asteroid (3200) Phaethon is a Near-Earth Apollo asteroid with an unusual orbit that brings it closer to the Sun than any other known asteroid. Its last close approach to the Earth was in 2017 mid-December and the next one will be on 2026 October. Previous rotationally time-resolved spectroscopy of Phaethon showed that its spectral slope is slightly bluish, in agreement with its B/F taxonomic classification, but at some rotational phases, it changes to slightly reddish. Motivated by this result, we performed time-resolved imaging polarimetry of Phaethon during its recent close approach to the Earth. Phaethon has a spin period of 3.604 h, and we found a variation of the linear polarization with rotation. This seems to be a rare case in which such variation is unambiguously found, also a consequence of its fairly large amplitude. Combining this new information with the brightness and colour variation as well as previously reported results from Arecibo radar observations, we conclude that there is no variation of the mineralogy across the surface of Phaeton. However, the observed change in the linear polarization may be related to differences in the thickness of the surface regolith in different areas or local topographic features.

     
    more » « less
  4. Gaia16aye was a binary microlensing event discovered in the direction towards the northern Galactic disc and was one of the first microlensing events detected and alerted to by the Gaia space mission. Its light curve exhibited five distinct brightening episodes, reaching up to I  = 12 mag, and it was covered in great detail with almost 25 000 data points gathered by a network of telescopes. We present the photometric and spectroscopic follow-up covering 500 days of the event evolution. We employed a full Keplerian binary orbit microlensing model combined with the motion of Earth and Gaia around the Sun to reproduce the complex light curve. The photometric data allowed us to solve the microlensing event entirely and to derive the complete and unique set of orbital parameters of the binary lensing system. We also report on the detection of the first-ever microlensing space-parallax between the Earth and Gaia located at L2. The properties of the binary system were derived from microlensing parameters, and we found that the system is composed of two main-sequence stars with masses 0.57 ± 0.05 M ⊙ and 0.36 ± 0.03 M ⊙ at 780 pc, with an orbital period of 2.88 years and an eccentricity of 0.30. We also predict the astrometric microlensing signal for this binary lens as it will be seen by Gaia as well as the radial velocity curve for the binary system. Events such as Gaia16aye indicate the potential for the microlensing method of probing the mass function of dark objects, including black holes, in directions other than that of the Galactic bulge. This case also emphasises the importance of long-term time-domain coordinated observations that can be made with a network of heterogeneous telescopes. 
    more » « less